Geostatistical modeling of variation in disease risk: continuous or binary data?
نویسندگان
چکیده
منابع مشابه
Modeling Student Learning: Binary or Continuous Skill?
Student learning is usually modeled by one of two main approaches: using binary skill, with Bayesian Knowledge Tracing being the standard model, or using continuous skill, with models based on logistic function (e.g., Performance Factor Analysis). We use simulated data to analyze relations between these two approaches in the basic setting of student learning of a single skill. The analysis show...
متن کاملBayesian modelling of geostatistical malaria risk data.
Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locatio...
متن کاملBayesian Geostatistical Modeling of Malaria Indicator Survey Data in Angola
The 2006-2007 Angola Malaria Indicator Survey (AMIS) is the first nationally representative household survey in the country assessing coverage of the key malaria control interventions and measuring malaria-related burden among children under 5 years of age. In this paper, the Angolan MIS data were analyzed to produce the first smooth map of parasitaemia prevalence based on contemporary nationwi...
متن کاملmodeling loss data by phase-type distribution
بیمه گران همیشه بابت خسارات بیمه نامه های تحت پوشش خود نگران بوده و روش هایی را جستجو می کنند که بتوانند داده های خسارات گذشته را با هدف اتخاذ یک تصمیم بهینه مدل بندی نمایند. در این پژوهش توزیع های فیزتایپ در مدل بندی داده های خسارات معرفی شده که شامل استنباط آماری مربوطه و استفاده از الگوریتم em در برآورد پارامترهای توزیع است. در پایان امکان استفاده از این توزیع در مدل بندی داده های گروه بندی ...
Geostatistical analysis of disease data: estimation of cancer mortality risk from empirical frequencies using Poisson kriging
BACKGROUND Cancer mortality maps are used by public health officials to identify areas of excess and to guide surveillance and control activities. Quality of decision-making thus relies on an accurate quantification of risks from observed rates which can be very unreliable when computed from sparsely populated geographical units or recorded for minority populations. This paper presents a geosta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Infectious Diseases
سال: 2019
ISSN: 1201-9712
DOI: 10.1016/j.ijid.2018.11.272